skip to main content


Search for: All records

Creators/Authors contains: "Schwartz, Naomi B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Inter-annual climate variability (hereafter climate variability) is increasing in many forested regions due to climate change. This variability could have larger near-term impacts on forests than decadal shifts in mean climate, but how forests will respond remains poorly resolved, particularly at broad scales. Individual trees, and even forest communities, often have traits and ecological strategies—the legacies of exposure to past variable conditions—that confer tolerance to subsequent climate variability. However, whether local legacies also shape global forest responses is unknown. Our objective was to assess how past and current climate variability influences global forest productivity. We hypothesized that forests exposed to large climate variability in the past would better tolerate current climate variability than forests for which past climate was relatively stable. We used historical (1950–1969) and contemporary (2000–2019) temperature, precipitation, and vapor pressure deficit (VPD) and the remotely sensed enhanced vegetation index (EVI) to quantify how historical and contemporary climate variability relate to patterns of contemporary forest productivity. Consistent with our hypothesis, forests exposed to large temperature variability in the past were more tolerant of contemporary temperature variability than forests where past temperatures were less variable. Forests were 19-fold times less sensitive to contemporary temperature variability where historical inter-annual temperature variability was 0.66 °C (two standard deviations) greater than the global average historical temperature variability. We also found that larger increases in temperature variability between the two study periods often eroded the tolerance conferred by the legacy effects of historical temperature variability. However, the hypothesis was not supported in the case of precipitation and VPD variability, potentially due to physiological tradeoffs inherent in how trees cope with dry conditions. We conclude that the sensitivity of forest productivity to imminent increases in temperature variability may be partially predictable based on the legacies of past conditions.

     
    more » « less
  2. Predicting drought responses of individual trees in tropical forests remains challenging, in part because trees experience drought differently depending on their position in spatially heterogeneous environments. Specifically, topography and the competitive environment can influence the severity of water stress experienced by individual trees, leading to individual-level variation in drought impacts. A drought in 2015 in Puerto Rico provided the opportunity to assess how drought response varies with topography and neighborhood crowding in a tropical forest. In this study, we integrated 3 years of annual census data from the El Yunque Chronosequence plots with measurements of functional traits and LiDAR-derived metrics of microsite topography. We fit hierarchical Bayesian models to examine how drought, microtopography, and neighborhood crowding influence individual tree growth and survival, and the role functional traits play in mediating species’ responses to these drivers. We found that while growth was lower during the drought year, drought had no effect on survival, suggesting that these forests are fairly resilient to a single-year drought. However, growth response to drought, as well as average growth and survival, varied with topography: tree growth in valley-like microsites was more negatively affected by drought, and survival was lower on steeper slopes while growth was higher in valleys. Neighborhood crowding reduced growth and increased survival, but these effects did not vary between drought/non-drought years. Functional traits provided some insight into mechanisms by which drought and topography affected growth and survival. For example, trees with high specific leaf area grew more slowly on steeper slopes, and high wood density trees were less sensitive to drought. However, the relationships between functional traits and response to drought and topography were weak overall. Species sorting across microtopography may drive observed relationships between average performance, drought response, and topography. Our results suggest that understanding species’ responses to drought requires consideration of the microenvironments in which they grow. Complex interactions between regional climate, topography, and traits underlie individual and species variation in drought response. 
    more » « less
  3. Abstract

    Tropical ecologists have long recognized rainfall as the key climate filter shaping tropical ecosystem structure and function across space and time. Still, tropical ecologists have historically had a limited toolkit for characterizing rainfall, largely relying on simple metrics like mean annual precipitation (MAP) and dry season length to characterize rainfall regimes that vary along many more dimensions. Here, we review methods for quantifying dimensions of rainfall variability on multiple time scales, with a focus on ecological applications of these methods. We also discuss key considerations for tropical ecologists looking to use rainfall metrics that better align with hypothesized biological or ecological mechanisms or that more effectively describe rainfall variability in the systems we study and provide a toolkit (R scripts and gridded datasets) to do so. We argue that incorporating more sophisticated approaches to quantify rainfall variability into study design and statistical analyses will enhance our understanding of past, ongoing, and future changes in tropical ecosystems.

    Abstract in Spanish is available with online material.

     
    more » « less
  4. null (Ed.)
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. 
    more » « less